Dynamics of coding in communicating with chaos

نویسندگان

  • Erik Bollt
  • Ying-Cheng Lai
چکیده

Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic orbits for communicating with chaotically behaving signal generators. The success of this type of nonlinear digital communication scheme relies on partitioning the phase space properly so that a good symbolic dynamics can be defined. A central problem is then how to encode an arbitrary message into the wave form generated by the chaotic oscillator, based on the symbolic dynamics. We argue that, in general, a coding scheme for communication leads to, in the phase space, restricted chaotic trajectories that live on nonattracting chaotic saddles embedded in the chaotic attractor. The symbolic dynamics of the chaotic saddle can be robust against noise when the saddle has large noise-resisting gaps covering the phase-space partition. Nevertheless, the topological entropy of such a chaotic saddle, or the channel capacity in utilizing the saddle for communication, is often less than that of the chaotic attractor. We present numerical evidences and theoretical analyses that indicate that the channel capacity associated with the chaotic saddle is generally a nonincreasing, devil’s-staircase-like function of the noise-resisting strength. There is usually a range for the noise strength in which the channel capacity decreases only slightly from that of the chaotic attractor. The main conclusion is that nonlinear digital communication using chaos can yield a substantial channel capacity even in noisy environment. S1063-651X 98 04708-4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Communicating with chaos using two-dimensional symbolic dynamics

Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimensional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be defined. A solution is proposed whe...

متن کامل

Frequency–driven chaos in the electrical circuit of Duffing-Holmes oscillator and its control

Accurate detection of weak periodic signals within noise and possibility of secure messaging have made Duffing oscillator (DO) highly important in the field of communication. Investigation on the properties of DO is thus ardently sought for. An elegant approach to accomplish the same is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal amp...

متن کامل

Study of the Transition to Instability in Second-Harmonic Generation with Scale Index Method

The emergence of second-harmonic generation (SHG) is a pivotal issue to the development of nano-optical devices and interfaces. Here, we perform a classical analysis of the SHG dynamics with the aim of determining critical values of the electric field. The signals of the SHG process are nonlinear, so it seems reasonable that chaos theory can be a suitable tool to analyze their dynamics. For thi...

متن کامل

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System

Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998